
@braddle

github.com/braddle/php-uk-2023

TDD Workshop

PHP UK Conference - 14/02/2023

Mark Bradley
Senior Consulting Software Engineer

@braddle

@braddle

About me

Software Engieneering Consultant for Armakuni

Cyclist, Photographer & Board Gamer

Test Driven Development
youtube.com/c/TestingAllTheThings

Twitter
twitter.com/braddle

@braddle

What will we cover?

● Describe the concept & benefits of Test Driven
Development (TDD)

● Describe the red, green, refactor cycle

● Describe the different Types of Tests

● Practice TDD using ping-pong pair programming style

● Identify different types of Refactoring

● Identify different types of test doubles

What?

@braddle

What is TDD?

Writing tests before you write new
code

Using tests to design how an
application should work

Not just unit tests

@braddle

Red

Write a failing Test & see it fail

● Make sure you are testing
something

● Ensure you see an error/failure
you are expecting

@braddle

Green

Make the failing test pass

● Write just enough code to fix the
error you see

● Don’t think about the whole
solution

@braddle

Refactor

Clean up the code

● Design the code to be easily
understandable and maintainable

● always keeping the tests passing
● one refactoring technique at a

time

@braddle

Demo 1
Stack

First In Last Out

@braddle

Arrange - Act - Assert

@braddle

Arrange Act Assert Examplepublic function testIsGreaterThan()
{
 // Arrange
 $five = new Integer(5);
 $four = new Integer(4);

 // Act
 $isGreaterThan = $five->isGreaterThan($four);
 $notGreaterThan = $four->isGreaterThan($five);

 // Assert
 $this->assertTrue($isGreaterThan);
 $this->assertFalse($notGreaterThan);
}

@braddle

Arrange Act Assert Examplepublic function testIsGreaterThan()
{
 // Arrange
 $five = new Integer(5);
 $four = new Integer(4);

 // Act & Assert
 $this->assertTrue($five->isGreaterThan($four));
 $this->assertFalse($four->isGreaterThan($five));
}

Why?

@braddle

Why use TDD

Fewer defects in your code

Only implement what is required

Increased code quality

Test First vs Test After

@braddle

Boring

@braddle

Tests are hard to write

@braddle

Easy to start skipping test

@braddle

Fun!

@braddle

Easy to write

@braddle

You don’t can’t skip tests

@braddle

Lab 1
Queue

First In First Out (FIFO)

Types of Tests

@braddle

What is this?

@braddle

Testing Pyramid

@braddle

Testing Pyramid

System

Integration

Unit

Manual

@braddle

Unit Tests

Targeted

Isolated

Repeatable & predictable

Fast

100% Code Coverage

@braddle

Integration Tests

Tests a small number of units or component together

Ensure the different units or component work together as
expected

Mocks external dependencies (Database, Email, ….)

Could be behavioural Tests

10% Code Coverage

@braddle

System (End to End) Tests

Flows through you application, usually a few core journeys

Uses all really services (Database, Email, …)

May interact with many different parts of you app in a single
test

May require some seeding of external services

5% Code Coverage

@braddle

Manual Tests

Still has its place

Exploratory Testing

Penetration Testing

Load Testing

Dependencies

@braddle

Task 1
Discover different Test Doubles?

https://martinfowler.com/bliki/TestDouble.html

https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/septe
mber/unit-testing-exploring-the-continuum-of-test-doubles

@braddle

Test Doubles

Imitating the functionality of dependencies

Allowing for isolation of unit and integration tests

Do not necessarily require a mocking framework

Implement the interface of a dependency

@braddle

Stubs

Implements the interface

Returns specific values

@braddle

Spies

Implements the interface

Returns specific values

Tracks call count and calling values

@braddle

Mocks

Implement the interface

Returns specific values

Tracks call count and calling values

Setup by the test

@braddle

Fakes

Implement the interface

Will contain some “Real” business logic

@braddle

Demo 2
Driving Licence Number Generator

Test Doubles

@braddle

Lab 2
Driving Licence Number Generator

Mockery

Refactoring

@braddle

Refactoring

Refactoring is a systematic process of improving code without
creating new functionality that can transform a mess into
clean code and simple design

@braddle

Task 2
Discover a New Refactoring Technique

https://refactoring.guru/refactoring/catalog

@braddle

Demo 3
Leap Year Calculator

@braddle

Lab III
Roman Numeral Converter

Arabic -> Roman Numerals

@braddle

Resources

● 30 Days of TDD by James Bender (@jamesbender)
○ http://www.telerik.com/blogs/30-days-tdd-day-one-what-is-tdd

● Code Coverage: Testing Private Functions (Me)
○ http://mark-bradley.net/2017/03/11/code-coverage-testing-privat

e-functions/

● Testing All The Things
○ youtube.com/c/TestingAllTheThings

●

http://www.telerik.com/blogs/30-days-tdd-day-one-what-is-tdd
http://mark-bradley.net/2017/03/11/code-coverage-testing-private-functions/
http://mark-bradley.net/2017/03/11/code-coverage-testing-private-functions/

@braddle

Katas & Dojos

● codingdojo.org/kata
● Kata-log.rocks

● meetup.com/London-Code-Dojo/
● meetup.com/london-software-craftsmanship/

@braddle

Feedback

Twitter: @braddle

Email: braddle@gmail.com

mailto:braddle@gmail.com

Retrospective

@braddle

Thank you

