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About me

Software Engieneering Consultant for Armakuni

Cyclist, Photographer & Board Gamer

Test Driven Development
youtube.com/c/TestingAllTheThings

Twitter
twitter.com/braddle
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What will we cover?

● Describe the concept & benefits of Test Driven 
Development (TDD)

● Describe the red, green, refactor cycle

● Describe the different Types of Tests

● Practice TDD using ping-pong pair programming style

● Identify different types of Refactoring

● Identify different types of test doubles



What?
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What is TDD?

Writing tests before you write new 
code

Using tests to design how an 
application should work

Not just unit tests
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Red 

Write a failing Test & see it fail

● Make sure you are testing 
something

● Ensure you see an error/failure 
you are expecting
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Green 

Make the failing test pass

● Write just enough code to fix the 
error you see

● Don’t think about the whole 
solution
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Refactor

Clean up the code

● Design the code to be easily 
understandable and maintainable 

● always keeping the tests passing 
● one refactoring technique at a 

time
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Demo 1
Stack

First In Last Out
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Arrange - Act - Assert
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Arrange Act Assert Examplepublic function testIsGreaterThan()
{
   // Arrange
   $five = new Integer(5);
   $four = new Integer(4);
  
   // Act
   $isGreaterThan = $five->isGreaterThan($four);
   $notGreaterThan = $four->isGreaterThan($five);
      
   // Assert
   $this->assertTrue($isGreaterThan);
   $this->assertFalse($notGreaterThan);
}
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Arrange Act Assert Examplepublic function testIsGreaterThan()
{
   // Arrange
   $five = new Integer(5);
   $four = new Integer(4);
      
   // Act & Assert
   $this->assertTrue($five->isGreaterThan($four));
   $this->assertFalse($four->isGreaterThan($five));
}



Why?
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Why use TDD

Fewer defects in your code

Only implement what is required

Increased code quality



Test First vs Test After
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Boring
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Tests are hard to write
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Easy to start skipping test
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Fun! 
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Easy to write
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You don’t can’t skip tests
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Lab 1
Queue

First In First Out (FIFO)



Types of Tests
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What is this?
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Testing Pyramid
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Testing Pyramid

System

Integration

Unit

Manual
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Unit Tests

Targeted

Isolated

Repeatable & predictable

Fast

100% Code Coverage
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Integration Tests

Tests a small number of units or component together

Ensure the different units or component work together as 
expected

Mocks external dependencies (Database, Email, ….)

Could be behavioural Tests

10% Code Coverage
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System (End to End) Tests

Flows through you application, usually a few core journeys

Uses all really services (Database, Email, …)

May interact with many different parts of you app in a single 
test

May require some seeding of external services

5% Code Coverage
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Manual Tests

Still has its place

Exploratory Testing

Penetration Testing

Load Testing



Dependencies
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Task 1
Discover different Test Doubles?

https://martinfowler.com/bliki/TestDouble.html

https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/septe
mber/unit-testing-exploring-the-continuum-of-test-doubles
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Test Doubles

Imitating the functionality of dependencies

Allowing for isolation of unit and integration tests

Do not necessarily require a mocking framework

Implement the interface of a dependency
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Stubs

Implements the interface

Returns specific values
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Spies

Implements the interface

Returns specific values

Tracks call count and calling values
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Mocks

Implement the interface

Returns specific values

Tracks call count and calling values

Setup by the test
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Fakes

Implement the interface

Will contain some “Real” business logic
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Demo 2
Driving Licence Number Generator

Test Doubles
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Lab 2
Driving Licence Number Generator

Mockery



Refactoring
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Refactoring

Refactoring is a systematic process of improving code without 
creating new functionality that can transform a mess into 
clean code and simple design



@braddle

Task 2
Discover a New Refactoring Technique

https://refactoring.guru/refactoring/catalog
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Demo 3
Leap Year Calculator
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Lab III
Roman Numeral Converter

Arabic -> Roman Numerals
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Resources

● 30 Days of TDD by James Bender (@jamesbender)
○ http://www.telerik.com/blogs/30-days-tdd-day-one-what-is-tdd

● Code Coverage: Testing Private Functions (Me)
○ http://mark-bradley.net/2017/03/11/code-coverage-testing-privat

e-functions/

● Testing All The Things
○ youtube.com/c/TestingAllTheThings

●

http://www.telerik.com/blogs/30-days-tdd-day-one-what-is-tdd
http://mark-bradley.net/2017/03/11/code-coverage-testing-private-functions/
http://mark-bradley.net/2017/03/11/code-coverage-testing-private-functions/
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Katas & Dojos

● codingdojo.org/kata
● Kata-log.rocks

● meetup.com/London-Code-Dojo/
● meetup.com/london-software-craftsmanship/
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Feedback

Twitter: @braddle

Email: braddle@gmail.com

mailto:braddle@gmail.com


Retrospective
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Thank you


